Role of grainyhead-like 2 in the formation of functional tight junctions

نویسندگان

  • Naoki Tanimizu
  • Toshihiro Mitaka
چکیده

Epithelial cells develop intercellular junctions, including tight junctions (TJs) and adherens junctions (AJs). In epithelial tissues, TJs act as barriers that protect bodies from dehydration, infection and toxic substances. However, the molecular mechanisms regulating the establishment of functional TJs during organogenesis remain largely unknown. Recently, we identified grainyhead-like 2 (Grhl2) as a transcription factor that is specifically expressed in cholangiocytes, which are epithelial cells lining the bile duct tubules in the liver. Using our three-dimensional (3D) culture system of hepatic progenitor cells, we demonstrated that Grhl2 enhanced barrier functions of hepatic progenitor cells by upregulating claudin (Cldn) 3 and Cldn4, thereby promoting epithelial morphogenesis. In addition, we identified Rab25 as another target of Grhl2, which promotes the localization of Cldn4 at TJs. Our results indicate that a transcription factor promotes epithelial morphogenesis by establishing functional TJs by not only regulating the transcription of Cldns but also affecting their localization at TJs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25

During development, epithelial progenitors establish intercellular junctions, including tight junctions (TJs), and form three-dimensional (3D) tissue structures, which are often associated with luminal structures. Here we identify grainyhead-like 2 (Grhl2) as a transcription factor that regulates the size of luminal space surrounded by polarized epithelial cells. We show that HPPL, a liver prog...

متن کامل

P 150: The Role of Blood Brain Barrier Restoration in the Multiple Sclerosis

Blood Brain Barrier (BBB) is a specialized non fenestrate barrier that formation by the endothelial cells and controls the transportation of the cells and molecules in to the brain. Reducing in function of BBB is one of disruptions in neurological diseases like multiple sclerosis. Endothelial progenitor cell (EPC) help to the BBB to control the diapedesis of inflammatory cells & molecules in to...

متن کامل

Role of Na-K-ATPase in the assembly of tight junctions.

Na-K-ATPase, also known as the sodium pump, is a crucial enzyme that regulates intracellular sodium homeostasis in mammalian cells. In epithelial cells Na-K-ATPase function is also involved in the formation of tight junctions through RhoA GTPase and stress fibers. In this review, a new two-step model for the assembly of tight junctions is proposed: step 1, an E-cadherin-dependent formation of p...

متن کامل

JAM-A and aPKC

Cell-cell adhesion plays a critical role in the formation of barrier-forming epithelia. The molecules which mediate cell-cell adhesion frequently act as signaling molecules by recruiting and/or assembling cytoplasmic protein complexes. Junctional Adhesion Molecule (JAM)-A interacts with the cell polarity protein PAR-3, a member of the PAR-3-aPKC-PAR-6 complex, which regulates the formation of c...

متن کامل

Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation.

The crucial role the Crumbs and Par polarity complexes play in tight junction integrity has long been established, however very few studies have investigated the role of the Scribble polarity module. Here, we use MCF10A cells, which fail to form tight junctions and express very little endogenous Crumbs3, to show that inducing expression of the polarity protein Scribble is sufficient to promote ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013